Department&Faulty

首页/ Home EN/ Department&Faulty/ Department of Mathematical Statistics

Yuan Zhang

返回列表

Administrative Title:

Associate Professor, Young Talents

Professional Title:

None

Office:

Room1004, Mingde Main Building

Email:

zhang_probab@ruc.edu.cn

Education

08/2010-05/2015, Duke University, United States, Ph.D. in Mathematics   

09/2006-07/2010, Peking University , B.S. in Mathematics and Applied Mathematics

 

Work Experience  

09/2022-present, Renmin University of China, Associate Professor

07/2018-09/2022, Peking University, Assistant Professor/ Research Fellow

08/2016-07/2018, Texas A&M University, United States, Visiting Assistant Professor

07/2015-06/2016, UCLA, United States, Assistant Adjunct Professor

 

Research Interest

Stochastic Spatial Process, Stochastic Interacting Particle System, Random Dynamic Model and Its Applications

Honors and Awards 

1. The 19th Basic Teaching Skills Competition for Young Teachers at Peking University,Science and Engineering,First Prize, independent winner,Peking University,2020

2. The 19th Basic Teaching Skills Competition for Young Teachers at Peking University,Best Teaching Demonstration Award, independent winner,Peking University,2020

3. The 19th Basic Teaching Skills Competition for Young Teachers at Peking University,Most Popular among Students Award‌,independent winner,Peking University,2020

4. The 12th Beijing University Young Teachers Teaching Basic Skills Competition,Group A of Science, Best Teaching Reflection Award,independent winner,Beijing Municipal Education Commission etc.,2021

5. The 12th Beijing University Young Teachers Teaching Basic Skills Competition,Group A of Science, Most Popular among Students Award‌, independent winner,Beijing Municipal Education Commission etc.,2021

6. The 12th Beijing University Young Teachers Teaching Basic Skills Competition,Group A of Science, Third Prize‌, independent winner,Beijing Municipal Education Commission etc.,2021

7. Outstanding Director of Class of Peking University in 2019-2020,independent winner,Peking University,2020

8. Outstanding Trade Union Activist at Peking University,independent winner,Peking University,2020

 

Funding 

1. On Finitary Random Interlacements,NSFC,general program,12271010,PI,2023-01-2026-12

2. On the Diffusion Limited Aggregation model with boundary conditions,NSFC,young scientist fund,11901012,PI,2020-01-2022-12

3. Random Programming Algorithm for Partially Observable Markov Processes,National Key Research and Development Program(project),2018AAA0101004,participant,2019.12-2022.12

4. Particle Systems and Percolation Models,National Key Research and Development Program(project),2020YFA0712902,participant,2020-12-2025-11

5. NSFC,82041023,participant,2020-03-2022-03

6. Neural mechanism modeling and auxiliary diagnosis and treatment algorithm for children with developmental disorders of the brain,NSFC,Mathematics Tianyuan Fund - Key Interdisciplinary Project of Mathematics and Medical Health, 12026606,participant,2021-01-2021-12,

7. Study on the vaccination strategy model of COVID-19 in China, commissioned by China CDC, participant,2020/11-2020/12

Educational Reform Project 

1. 《Measure Theory》,"Teaching Reform Project" of Renmin University of China - Construction of Mathematics Class for Talents,Renmin University of China,participant(course director),2021-2022 academic year

 

Publications:

1. Durrett, R., & Zhang, Y. (2014). Exact solution for a metapopulation version of Schelling's model. Proceedings of the National Academy of Sciences - PNAS, 111(39), 14036-14041. doi:10.1073/pnas.1414915111

2. Durrett, R., Liggett, T., & Zhang, Y. (2014). The contact process with fast voting. Electronic Journal of Probability, 19 doi:10.1214/EJP.v19-3021

3. Durrett, R., & Zhang, Y. (2015). Coexistence of grass, saplings and trees in the Staver–Levin forest model. The Annals of Applied Probability, 25(6), 3434-3464. doi:10.1214/14-AAP1079

4. Lanchier, N., & Zhang, Y. (2016). Some rigorous results for the stacked contact process. Alea-Latin American Journal of Probability and Mathematical Statistics, 13(1), 193-222. doi:10.30757/ALEA.v13-08

5.  Liu, J., & Zhang, Y. (2016). Convergence of diffusion-drift many particle systems in probability under a Sobolev norm. (pp. 195-223). Cham: Springer International Publishing. doi:10.1007/978-3-319-32144- 8_10

6.  Liu, J., & Zhang, Y. (2016). Convergence of stochastic interacting particle systems in probability under a sobolev norm. Annals of Mathematical Sciences and Applications, 1(2), 251-299. doi:10.4310/AMSA.2016.v1.n2.a1

7. Procaccia, E. B., & Zhang, Y. (2018). On covering paths with 3 dimensional random walk. Electronic Communications in Probability, 23 doi:10.1214/18-ECP160

8. Procaccia, E. B., & Zhang, Y. (2019). Connectivity properties of branching interlacements. Alea-Latin American Journal of Probability and Mathematical Statistics, 16(1), 279-314. doi:10.30757/ALEA.v16-10

9. Wang, C., Zhang, Y., Bertozzi, A. L., & Short, M. B. (2019). A stochastic-statistical residential burglary model with finite size effects. (pp. 245-274). Cham: Springer International Publishing. doi:10.1007/978- 3-030-20297-2_8

10.  Procaccia, E. B., & Zhang, Y. (2019). Stationary harmonic measure and DLA in the upper half plane. Journal of Statistical Physics, 176(4), 946-980. doi:10.1007/s10955-019-02327-y

11. Wang, C., Zhang, Y., Bertozzi, A. L., & Short, M. B (2020). A stochastic-statistical residential burglary model with independent poisson clocks. European Journal of Applied Mathematics, , 1-27. doi:10.1017/s0956792520000029

12. Procaccia, E. B., Rosenthal, R., & Zhang, Y. (2020). Stabilization of DLA in a wedge. Electronic Journal of Probability, 25 doi:10.1214/20-EJP446

13. Procaccia, E. B., Ye, J., & Zhang, Y. (2020). Stationary DLA is well defined. Journal of Statistical Physics, 181(4), 1089-1111. doi:10.1007/s10955-020-02619-8

14. Mu, Y. X., & Zhang, Y. (2020). On some threshold-one attractive interacting particle systems on homogeneous trees. Journal of Applied Probability, 57(3), 866-898. doi:10.1017/jpr.2020.38

15. Procaccia, E. B., & Zhang, Y. (2020). On covering monotonic paths with simple random walk. Electronic Journal of Probability, 25, 1-39. https://doi.org/10.1214/20-EJP545

16.  Zhang, Y., You, C., Cai, Z., Sun, J., Hu, W., & Zhou, X. (2020). Prediction of the COVID-19 outbreak in china based on a new stochastic dynamic model. Scientific Reports, 10(1), 21522-21522. doi:10.1038/s41598-020-76630-0

17. Zhang, Y-J., Zhang, Y., You, C.,Zhou X. (2020),Review on the study of spreading of the COVID-19 based on dynamic models, Chinese Journal of Medical Science Research Management,33: DOI:10.3760/cma.j.cn113565-20200214-00007 (in Chinese)

18.  Zhang, Y., You, C.,Cai, Z., Sun, J., Hu, W., Zhou X. (2020),A New Stochastic Dynamics Model for COVID-19 and Its Application, Acta Mathematicae Applicatae Sinica, 43(2),440-451 (in Chinese)

19. Procaccia, E. B., & Zhang, Y. (2021). On sets of zero stationary harmonic measure. Stochastic Processes and their Applications, 131, 236-252. doi:10.1016/j.spa.2020.09.007

20. Cai, Z., Xiong, Y., & Zhang, Y. (2021). On (non-)monotonicity and phase diagram of finitary random interlacement. Entropy (Basel, Switzerland), 23(1), 69. doi:10.3390/e23010069

21. Procaccia, E. B., Ye, J., & Zhang, Y. (2021). Percolation for the finitary random interlacements. Alea, 18(1), 265-287. https://doi.org/10.30757/ALEA.V18-12

22. Wang, C., & Zhang, Y. (2021). A Multiscale Stochastic Criminal Behavior Model under a Hybrid Scheme. Electronic Research Archive, 29(4): 2741-2753. doi:10.3934/era.2021011

23. Procaccia, E. B., Ye, J., & Zhang, Y. (2021). Stationary harmonic measure as the scaling limit of truncated harmonic measure. Alea, 18, 1529–1560. doi:10.30757/ALEA.v18-5

24. Cai, Z., & Zhang, Y. (2021). Some Rigorous Results on the Phase Transition of Finitary Random Interlacement. Electronic Communications in Probability, 26: 1-11. doi: 10.1214/21-ECP424

25. You, C., Gai, X., Zhang Y., & Zhou X. (2021). Determining the Covertness of COVID-19 — Wuhan, China, China CDC Weekly, 3(8), 170-173. doi:10.46234/ccdcw2021.048

26. Zhang, Y., You, C., Gai, X., & Zhou X. (2021) On the coexistence with COVID-19: estimations and perspectives. China CDC Weekly, 3(50): 1057-1061. doi: 10.46234/ccdcw2021.245

27.  Liu, J., Wang, Z., Xie, Y., Zhang, Y., & Zhou, Z. (2021). Investigating the integrate and fire model as the limit of a random discharge model: A stochastic analysis perspective. Mathematical Neuroscience and Applications, 1. https://doi.org/10.46298/mna.7203

28. Liu, J., Wang, Z., Zhang, Y., & Zhou, Z. (2022). Rigorous justification of the Fokker-Planck equations of neural networks based on an iteration perspective. SIAM Journal on Mathematical Analysis, 54: 1270-1312 https://doi.org/10.1137/20M1338368

29. Cai, Y., Wang, C., Zhang, Y. (2021). A multiscale stochastic criminal behavior model and the convergence to a piecewise-deterministic- Markov-process limit. Mathematical Models and Methods in Applied Sciences, 32(4): 619-645 DOI: 10.1142/S0218202522500142

30. Wang, X., Cai, Y., Zhang, B., Zhang, X., Wang, L., Yan, X., Zhao X., Zhang, Y., Jia Z. (2022) Cost-effectiveness analysis on COVID-19 surveillance strategy of large-scale sports competition. Infectious Diseases of Poverty, 11, 32 (2022). https://doi.org/10.1186/s40249-022-00955-3

31. Cai, Z., Han, X., Ye, J., & Zhang, Y. (2022). On chemical distance and local uniqueness of a sufficiently supercritical finitary random interlacement. Journal of Theoretical Probability. https://doi.org/10.1007/s10959-022-01182-0

32. Cai, Z., Procaccia, E. B., & Zhang, Y. (2022). Continuity and uniqueness of percolation critical parameters in Finitary Random Interlacements. Electronic Journal of Probability. 27, 1-46. DOI: 10.1214/22-EJP824

33. Mu, Y., Procaccia, E. B., & Zhang, Y. (2022). Scaling limit of DLA on a long line segment. Transactions of the American Mathematical Society. https://doi.org/10.1090/tran/8771

34. Tan, Y., Zhang, Y., Cheng, X., Zhou, X. (2022). Statistical inference using GLEaM model with spatial heterogeneity and correlation between regions. Scientific Reports. 12:  16630 https://doi.org/10.1038/s41598-022-18775-8

35. Zhang, Y-J., Zhang, Y., You, C.,Zhou X. (2020),Review on the study of spreading of the COVID-19 based on dynamic models, Chinese Journal of Medical Science Research Management,33: DOI:10.3760/cma.j.cn113565-20200214-00007 (in Chinese)

36.  Zhang, Y., You, C.,Cai, Z., Sun, J., Hu, W., Zhou X. (2020),A New Stochastic Dynamics Model for COVID-19 and Its Application, Acta Mathematicae Applicatae Sinica, 43(2),440-451 (in Chinese)

37. Cai, Z., & Zhang, Y. (2023). On the exact orders of critical value in Finitary Random Interlacements. Stochastic Processes and their Applications. 159, 391-427. https://doi.org/10.1016/j.spa.2023.02.008

38. Xiong, Y., Wang, C.& Zhang Y.† (2024). Interacting particle models on the impact of spatially heterogeneous human behavioral factors on dynamics of infectious diseases. PLOS COMPUTATIONAL BIOLOGY. 20(8): e1012345. https://doi.org/10.1371/journal.pcbi.1012345

39. Han, X., Zhang, Y., & Ge, H. (2024). Cover-time Gumbel fluctuations in finite-range, symmetric, irreducible random walks on torus. Journal of Physics A: Mathematical and Theoretical. 57 285203 DOI 10.1088/1751-8121/ad591f

 

Books 

1. Wang, F., and Zhang, Y. ,《A Comparative Study of Miao-Yao Languages Based on Rigorous Sound Correspondences》,Peking University Press,2024,ISBN 978-7-301-34799-7 (in Chinese)

 

Teaching

1. Undergraduate:Mathematical Analysis (I-III), Selected Lectures on Modern Mathematics, Measure Theory

2. Graduate: Academic Norms and Thesis Writing (joint)

 

Invited Talks 

1. Vertex-removal stability and the least positive value of harmonic measures,ICCM2024,01/062025,Shanghai Institute for Mathematics and Interdisciplinary Sciences,Invited Lecture  

2. Limit of DLA on a long line segment,Workshop “Directions in Aggregation Processes”, 05/012023,Technion-Israel Institute of Technology,  Invited Lecture

3. STABILIZATION OF DLA IN A WEDGE, The 11th National Conference on Probability and Statistics 10/25/2018-10/28/2018, Southwest University of Finance and Economics,Group Invited Lecture

4. STABILIZATION OF DLA IN A WEDGE, The 14th Workshop on Markov Processes and Related Topics, 07/16/2018-07/20/2018,Sichuan University, Invited Lecture