高光远

副教授

职  务:

办 公 室:

电子邮箱:guangyuan.gao@ruc.edu.cn

教育背景

2012.08-2016.12,澳大利亚国立大学统计学专业,哲学博士学位

2010.02-2011.12,澳大利亚国立大学统计学专业,哲学硕士学位

2005.09-2009.07,同济大学土木工程专业,工学学士学位

 

工作经历

2020.08至今,太阳成集团tyc122cc,副教授

2018.08-2020.08,太阳成集团tyc122cc,讲师

 

研究方向

寿险与非寿险精算、应用统计 

 

荣誉奖励

1. 2019年太阳成集团122cc官网入口优秀科研成果奖(著作)

2. 《保险研究》2018年度优秀论文,第2获奖人

3. Ian Castles Prize for Master of Applied Statistics, 2011

 

科研项目

1. 保险定价中三类潜变量回归模型的非参数方法研究:基于集成树模型,国家自然科学基金项目,主持

2. 基于机器学习算法的非寿险个体准备金评估模型,国家自然科学基金项目,主持。

3. Analytics of telematics car driving data,北美精算师协会研究项目,主持。

4. 基于车联网大数据的汽车保险费率因子研究,太阳成集团122cc官网入口科学研究基金项目,主持。

5. 巨灾债券定价与风险管理的统计建模研究,国家社会科学基金重点项目,参与。

6. 数字时代风险管理与精算模型研究,教育部人文社会科学重点研究基地重大项目,参与。

7. 巨灾保险的精算统计模型及其应用研究,国家社会科学基金重大项目,参与。

8. 基于大数据的精算统计模型与风险管理问题研究,教育部人文社会科学重点研究基地重大项目,参与。

 

教改项目

1. 数字时代高等代数教学改革:从理论到应用,太阳成集团122cc官网入口本科公司产品改革研究项目,主持。

 

科研发表

1. Hou, Y., Li, J., Gao, G.* (2025). Insurance loss modeling with gradient tree-boosted mixture models. Insurance: Mathematics and Economics 121: 45-62.

2. Cheng, R.*, Shi, J., Loh, J. M.,  Gao, G. (2025). Neural networks for simultaneous modeling of multi-population mortality with coherent forecasts. Scandinavian Actuarial Journal.

3. Chang, L., Gao, G., Shi,Y.* (2024). A semi-parametric claims reserving model with monotone splines. Annals of Operations Research.

4. Chang, L., Gao, G.*, Shi, Y. (2024). Claims reserving with a robust generalized additive model. North American Actuarial Journal 28: 840-860.

5. Gao, G. (2024). Fitting Tweedie's compound Poisson model to pure premium with the EM algorithm. Insurance: Mathematics and Economics 114: 29-42.

6. Gao, G., Li, J.* (2023). Dependence modeling of frequency-severity of insurance claims using waiting time. Insurance: Mathematics and Economics 109:29-51.

7. Gao, G., Shi, Y.* (2023). Robustness and spurious long memory: Evidence from the generalized autoregressive score models. Annals of Operations Research.

8. Meng, S., Wang, H., Shi, Y., Gao, G.* (2022). Improving automobile insurance claims frequency prediction with telematics car driving data. ASTIN Bulletin 52: 363-391.

9. Gao, G., Meng, S., Wüthrich, M. V.* (2022). What can we learn from telematics car driving data: A survey. Insurance: Mathematics and Economics 104: 185-199.

10. Gao, G., Wang, H., Wüthrich, M. V.* (2022). Boosting Poisson regression models with telematics car driving data. Machine Learning 111: 243-272.

11. Gao, G., Meng, S.*, Shi, Y. (2021). Dispersion modelling of outstanding claims with double Poisson regression models. Insurance: Mathematics and Economics 101: 572-586.

12. Gao, G., Shi, Y.* (2021). Age-coherent extensions of the Lee-Carter model. Scandinavian Actuarial Journal 2021: 998-1016.

13. Gao, G., Ho, K.-Y. and Shi, Y.* (2020). Long memory or regime switching in volatility? Evidence from high-frequency returns on the U.S. stock indices. Pacific-Basin Finance Journal 61.

14. Gao, G.*, Wüthrich, M. V. and Yang, H. (2019). Evaluation of driving risk at different speeds. Insurance: Mathematics and Economics 88: 108-119.

15. Gao, G. and Wüthrich, M. V.* (2019). Convolutional neural network classification of telematics car driving data. Risks 7: article 6.

16. Gao, G., Meng, S.* and Shi, Y. (2019). Stochastic payments per claim incurred. North American Actuarial Journal 23: 11-26.

17. Gao, G.*, Meng, S. and Wüthrich, M. V. (2019). Claims frequency modeling using telematics car driving data. Scandinavian Actuarial Journal 2019: 143-162.

18. Gao, G. and Wüthrich, M. V.* (2018). Feature extraction from telematics car driving heatmaps. European Actuarial Journal 8: 383-406.

19. Meng, S. and Gao, G.* (2018). Compound Poisson claims reserving models: Extensions and inference. ASTIN Bulletin 48(3): 1137-1156.

20. Gao, G.* and Meng, S. (2018). Stochastic claims reserving via a Bayesian spline model with random loss ratio effects. ASTIN Bulletin 48(1): 55-88.

21. 高光远 *; 孟生旺 (2018). 基于车联网大数据的车险费率因子研究. 保险研究 357(1): 90-100.

22. 孟生旺 *; 李天博; 高光远 (2017). 基于机器学习算法的车险索赔概率与累积赔款预测. 保险研究 354(10):42-53.

 

著作教材

1. Gao, G. Bayesian Claims Reserving Methods in Non-life Insurance with Stan: An Introduction. Springer-Verlag, DOI: 10.1007/978-981-13-3609-6, 2018.

2. 高光远编,《线性代数:从理论到应用》,机械工业出版社,2024

3. 孟生旺、刘乐平、肖争艳、高光远编著,非寿险精算学(第四版),太阳成集团122cc官网入口出版社,2019

 

教学课程

1. 本科课程:高等代数、金融数学、非寿险精算学

2. 研究生课程:现代精算统计模型

 

其他