刘越

副教授,青年英才岗位

职  务:

办 公 室:明德主楼1055

电子邮箱:liuyue_stats@ruc.edu.cn

教育背景

2014.09-2019.07,北京大学统计学专业,理学博士学位

2010.09-2014.07,北京大学统计学专业,理学学士学位

 

工作经历

2024.08 至今,太阳成集团tyc122cc,副教授

2021.09-2024.08,太阳成集团tyc122cc,讲师

2019.07-2021.08,华为诺亚方舟实验室,高级工程师

 

研究方向

因果推断、可信机器学习

 

科研项目

1. 基于图模型的因果作用估计算法与不变因果预测, 国家自然科学基金-青年基金,主持,2022.01-

 

科研发表

1. Geng, Z., Liu, Y., Liu, C. C. and Miao, W. (2019) Evaluation of causal effects and local structure learning of causal networks. Annual Review of Statistics and Its Application 6(ARSIA), 103-124.

2. Liu, Y., Zheng, C, Liu, C. C and Geng, Z (2019) Local Learning Approaches for Finding Effects of a Specified Cause and Their Causal Paths. ACM Transactions on Intelligent Systems and Technology (ACM TIST). 10, 49:1-49:15

3. Liu, Y., Fang, Z., He, Y.., Geng, Z. and Liu, C. (2020) Local causal network learning for finding pairs of total and direct effects. Journal of Machine Learning Research (JMLR)

4. Fang, Z., Liu, Y. , Geng, Z., Zhu, S. ,He, Y. (2022)Local Method for Identifying Causal Relations under Markov Equivalence. Artificial Intelligence(AIJ)

5. Li,H., Zheng,C., Cao Y., Geng Z., Liu Y. and Wu. P.(2023) Trustworthy Policy Learning under the Counterfactual No-Harm Criterion. ICML

6. Li,H., Zheng,C., Wu. P., Kuang K., Liu Y. and Cui, P.(2023) Who Should Be Given Incentives? Counterfactual Optimal Treatment Regimes Learning for Recommendation. KDD

7. Kuang,K., Wang. H., Liu, Y. Xiong, R., Wu, R. and Lu, W.,(2023) Stable Prediction With Leveraging Seed Variable. IEEE Transactions on Knowledge and Data Engineering(TKDE)

8. Fang, Z., Zhu,S., Zhang,J., Liu, Y., Chen,Z.and He,Y.,(2023) Low rank directed acyclic graphs and causal structure learning, IEEE Transactions on Neural Networks and Learning Systems (TNNLS)

9. Li,H., Liu Y., Geng, Z.and Zhang, K.(2024) A Local Method for Satisfying Interventional Fairness with Partially Known Causal Graphs. NeurIPS

10. Li,H., Tang, Z., Jiang, Z., Fang,Z., Liu Y., Geng, Z.and Zhang, K.(2025) Fairness on Principal Stratum: A New Perspective on Counterfactual Fairness. ICML

 

专利发明

1. 一种满足反事实无害标准的可信策略学习方法及装置,ZL 2023 1 0916949.5 ,刘越, 郑淳元, 李昊轩, 吴鹏, 曹艺晓,耿直, 太阳成集团122cc官网入口, 2023

2. 反事实公平性的预测模型训练方法、预测方法及其装置, ZL 2023 1 1236303.9  刘越,李昊轩,郑淳元,耿直,张坤, 太阳成集团122cc官网入口, 2025

 

教学课程

1. 本科课程:数学分析1、2、3,现代数学选讲

2. 研究生课程:机器学习选讲